
 © 2012 AgilePoint, Inc. DOC ID: 12111-ALD-1.0

AGILELIGHTFORMS DESIGN GUIDE

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 2 of 42

Table of Contents
1. Introduction 4

1.1 Disclaimer of warranty 4

2. Managing Forms in CRM 5

3. Creating new Forms 9
3.1 Form to Complete a Manual CRM Activity 9
3.2 Form to Complete an External Manual Task 10
3.3 Form to Create Child Entities 11
3.4 Form to View or Edit Child Entities 12
3.5 Form To Create Entities and Launch a Process 13

4. AgileLightForms Designer Tool Bar 13
4.1 Language Combo 14
4.2 Export Form… Button 15
4.3 Import Form… Button 15
4.4 Upload Handler… Button 16
4.5 Remove Handler Button 16
4.6 Full-screen Button 16
4.7 Clear Cache Button 16

5. Connection Editor 17
5.1 Entity Editor 17
5.2 Entity Validation 18
5.3 AgilePoint Connection 18
5.4 CRM Connection 19

6. Schema Designer 20
6.1 Result Metadata 21

6.1.1 Result Metadata Attributes 21
6.2 Data Binding 25
6.3 Localizable Texts and Concatenations 27
6.4 Entity Bar 27

6.4.1 Parameters Entity 28
6.4.2 Work Item Entity 28
6.4.3 Process Instance Entity 28
6.4.4 Custom Attributes Entity 28
6.4.5 AgileXRM User Entity 29
6.4.6 AgileXRM External User Entity 29
6.4.7 New CRM Entity 30
6.4.8 Existing CRM Entity 30

7. Submit Action Editor 31
7.1 Complete Form Submit Action 32
7.2 Complete Work Item Submit Action 33

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 3 of 42

7.3 Launch Process 1 Submit Action 33
7.4 Launch Process 2 Submit Action 34
7.5 Complete Activity Submit Action 34

8. Form Editor 35
8.1 Entity Bar 35
8.2 Design Surface 37
8.3 Actions Pane 39

8.3.1 Movement Pane 39
8.3.2 Command Pane 39
8.3.3 Form Properties 39
8.3.4 Tab Properties 40
8.3.5 Section Properties 40
8.3.6 Attribute Properties 41
8.3.7 Control Properties 41

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 4 of 42

AgileLightForms Design Guide

1. Introduction
This document will describe how to design AgileLightForms (ALF).

Previous knowledge of SharePoint, CRM, and AgilePoint are required.

1.1 Disclaimer of warranty
AgilePoint Inc. makes no representations or warranties, either express or implied, by or with respect
to anything in this document, and shall not be liable for any implied warranties of merchantability or
fitness for a particular purpose or for any indirect, special or consequential damages.

Copyright © 2012, AgilePoint Inc. All rights reserved.

GOVERNMENT RIGHTS LEGEND: Use, duplication or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable AgilePoint Inc. license agreement and as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a)
(1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

‘AgilePoint Inc.’ and all its products are trademarks of AgilePoint Inc.. References to other companies
and their products use trademarks owned by the respective companies and are for reference
purposes only.

 © 2011 AgilePoint, Inc. DOC ID: 12111-ALD-1.0

2. Managing Forms in CRM
AgileLightForms are CRM records (ascentn_agilelightforms) that can be managed like any other CRM
record. Forms can be added, deleted, opened and searched for in the usual way.

Figure 1 - Managing AgileLightForms in CRM

Form Designers must be CRM users with, at least, permissions to manage AgileLightForms and access
metadata. Permissions to manage other entities can be required to create forms to access those
entities. For a complete guide on required permissions, see the AgileXRM Reference Architecture
document.
AgileLightForms can be accessed from the Settings Area in the main CRM page, after AgileXRM
installation. This can be changed using standard CRM customization.
NOTE: Do not rename forms once they’re referenced by a process template (a form can be referenced
to be a start-up form, a task form, or a child view form). If you rename a referenced form, AgileXRM
won’t be able to find it, and process execution will fail.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 6 of 42

Figure 2 – AgileLightForm referenced as AgileXRM Process Start-up Form

Figure 3 - AgileLightForm referenced as CRM Manual Activity Form

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 7 of 42

Figure 4 - AgileLightForm referenced as External Task Form

You can further customize the entity to add other attributes, and edit the CRM form, but you should
never delete any of the standard attributes.
Customizing the default public view of AgileLightForms not only changes the way in which forms are
displayed in CRM by default, but also how they are displayed in AgilePoint Envision and inside
AgileLightForms Designer.
AgileLightForms Designer is embedded in the CRM form for AgileLightForms. It is in an IFrame. If you
customize this form, take care not to remove this IFrame. Keep in mind too that reducing the size of the
IFrame could adversely affect the usability of AgileLightForms Designer.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 8 of 42

Figure 5 - Design Area in CRM Form for AgileLightForms

Actual form design is stored in a note called AgileLightForm.zip. If you delete this note, you’ll lose your
form design. Nevertheless, this can be useful if your form is corrupt for whatever the reason.

Figure 6 - AgileLightForm design Note

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 9 of 42

3. Creating new Forms
After creating a new form, you must give it a name and save it before the designer appears. If ALF
designer can’t find the form design (the AgileLightForm.zip note), a window appears asking which
template to use to create the new form.
This only affects to the initial layout of the new form. You can freely edit them to create mixed forms, or
any other variety not listed here.

Figure 7 - New Form Templates

3.1 Form to Complete a Manual CRM Activity
This template creates a form that is designed to be embedded inside a CRM Activity Form (Task, Phone
Call, Fax…). It connects to the default CRM and AgilePoint servers, gets the WorkItemId as a form
parameter, and uses it retrieve the Work Item, the Process Instance, and the Custom Attributes from
AgilePoint Server. Then, it uses the Custom Attributes to retrieve the process main entity from CRM
Server.

Figure 8 - Form to Complete a Manual CRM Task

This form template doesn’t do anything on submit, apart from completing the form. So, the user must
complete the CRM Activity in the usual way for the process to continue.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 10 of 42

3.2 Form to Complete an External Manual Task
This template creates a form that is designed to fulfill an external task. It will be opened from the Task
List AgileXRM WebPart in SharePoint. It connects to the default CRM and AgilePoint servers. It gets the
WorkItemId as a form parameter, and uses it to retrieve the Work Item, the Process Instance, and the
Custom Attributes from AgilePoint Server. Then, it uses the Custom Attributes to retrieve the process
main entity from CRM Server.

Figure 9 - AgileXRM Task List WebPart in a SharePoint site

On submit, this form completes both the form and the AgilePoint Work Item.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 11 of 42

3.3 Form to Create Child Entities
This template creates a form that is designed to create child entities as a child form of the Child View
control. It appears whenever a user clicks the Add button.

Figure 10 - Add Child Button in Child View Control

On submit, the new entity is added to the parent form. It is not really created in CRM until the main
form is submitted.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 12 of 42

3.4 Form to View or Edit Child Entities
This template creates a form that is designed to view or edit child entities as a child form of the Child
View control. It appears whenever a user clicks the View or Update buttons.

Figure 11 - View Child Button in Child View Control

If editing is allowed, on submit, the entity is updated in the parent form. It is not really updated in CRM
until the main form is submitted.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 13 of 42

3.5 Form To Create Entities and Launch a Process
This template creates a form that is designed to create a new CRM entity and launch an AgilePoint
process associated to it. This form has to be configured as start-up form for a process in Envision. Then,
the Launch Process AgileXRM WebPart in Envision will display the process template to users with
permissions to open it. When they click on the process template name, the WebPart will open the form.

Figure 12 - AgileXRM Launch Process WebPart in a SharePoint site

This form connects to the default CRM and AgilePoint servers. On submit, it launches a new instance of
the specified AgileXRM Process, associating it to the new CRM entity created.

4. AgileLightForms Designer Tool Bar
The top part of the AgileLightForms Designer is the tool bar. It contains some controls useful for form
designing process:

Figure 13 - AgileLightForms Designer Tool Bar

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 14 of 42

4.1 Language Combo
Forms created by AgileLightForms designer are multilingual forms, i.e., they can be used by users with
different languages. For this to be possible, all form texts have to be entered once for every language of
target users. For every text you type (label, or literal used to initialize an attribute at form start-up), this
control tells in which language is that text written.

Figure 14 - Language Combo

To translate a form just change the language in the Language Combo and write again all labels and
literals.
During run-time, when a user opens a form, AgileLightForms selects the most appropriate language for
that user, depending on the available languages in form template.
For example, let’s suppose that we have the following labels for a control in our form:

• English: Center
• UK English: Centre
• Spanish: Centro

Users from the United Kingdom will see “Centre”, while users from the rest of English Speaking
countries will see “Center”, and Spanish users (from any Spanish speaking country) will see “Centro”.
ALF will first try to find a label for the language and culture of the form user. If it fails to find it, it will
search for a generic label for the language of the form user (ignoring the culture). If it doesn’t find it,
then it will use the first label it finds for the same language, even if it is for a different culture. If it is not
able to find a label in the language of the form user, the first label found will be used.
For example, if a user from Australia opens a form, ALF will first look for labels for Australian English. If it
doesn’t find them, it will look for labels for Generic English. If it doesn’t find them, it will use any label
for English in other countries (American, British…). If it still doesn’t find any, it will use the first label it
finds, that won’t be English at all.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 15 of 42

The list of languages available on the list is configured by an administrator in the
ApFormsServerConfig.xml file in the App_Data folder in AgileLightForms Server site. Every language
option in this file has the following format:

 <DataOption>
 <Value xsi:type="xsd:string">en-US</Value>
 <ImageUrl>/Images/16x16/flag_usa.png</ImageUrl>
 <Labels>
 <Labels>
 <item key="en-US">
 <string>English (United States)</string>
 </item>
 </Labels>
 </Labels>
 </DataOption>

The text inside Value element is the .NET code for the language and / or culture. For a complete list of
available languages visit http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx.
The text inside the ImageUrl element is the path for the language icon. Allowed formats are .png, .gif,
and .jpg. If the image is outside of AgileLightForms Server site, take into account that AgileLightForms
Server will navigate to it using the credentials of the account of the AgileLightForms Server Application
Pool.
The Labels element is optional. If omitted, ALF will display the native name for the language and culture
specified in the Value element.
If specified, it contains a list of labels for the language, each one in a different Language and or culture.
Each label must be in its own Labels element and, inside it, there must be an item element whose key
attributes indicates the language and culture of the label. The label must be in a string element inside
that one.
Hint: When importing entity forms or attribute controls from CRM, AgileLightForms imports labels in all
languages available in the CRM Server from which forms or controls are being imported. So, CRM Server
in development environment should have all target user Language Packs to avoid translation efforts.

4.2 Export Form… Button
This button allows you to export the form design as a Visual Studio project, which can be opened with
Visual Studio, Expression Blend, or other XAML editors.
Refer to “AgileXRM AgileLightForms Programmer's Guide” for more information about exporting forms.

Figure 15 – Export Form… Button

4.3 Import Form… Button
This button allows you it import the form design from a previously exported Visual Studio project, after
having edited it with Visual Studio, Expression Blend, or other XAML editors.
Refer to “AgileXRM AgileLightForms Programmer's Guide” for more information about importing forms.

Figure 16 – Import Form… Button

http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 16 of 42

4.4 Upload Handler… Button
This button allows you to upload a form handler, an assembly with code that will be executed on certain
form events, such as loading, submitting or attribute changing.
Refer to “AgileXRM AgileLightForms Programmer's Guide” for more information about form handlers.

Figure 17 – Upload Handler… Button

4.5 Remove Handler Button
This button allows you to remove the previously uploaded handler from a form.
Refer to “AgileXRM AgileLightForms Programmer's Guide” for more information about form handlers.

Figure 18 – Remove Handler Button

4.6 Full-screen Button
This button allows you to enter or leave the full-screen mode. This mode is useful to maximize the
design area.

Figure 19 - Full-screen Button

Pressing Ctrl + F11 is similar to clicking this button. Esc allows you to exit full-screen mode.
Note: Due to security reasons, Silverlight applications aren’t allowed to receive keyboard input when in
full-screen mode. So, you can only use the mouse in this mode.

4.7 Clear Cache Button
For performance reasons, AgileLightForms Server does not access data sources (CRM, AgilePoint…)
whenever it needs some data from them. Instead, it caches the response it receives for one request and
uses it for similar requests.

Figure 20 - Clear Cache Button

Cached values are disposed of after they have not been used for a certain amount of time, called cache
time. An administrator can configure the cache time in the ApFormsServerConfig.xml file in the
App_Data folder in AgileLightForms Server site. The default cache time
(<CacheTime>01:00:00</CacheTime>) is one hour.
This behavior dramatically improves performance when, for example, accessing metadata, but has some
drawbacks if the cached data has been changed in its data source and we still see the old (stale) data.
In cases in which we have recently made a change to a data source (like, for instance, creating a new
CRM entity, or adding a new attribute to an existing entity) and we don’t see that changes in ALF
Designer, clearing the cache can solve the problem.
Keep in mind that clearing the cache will not only affect the performance of the user that clears the
cache, but of all users of ALF server. Also, it will not only affect the performance of ALF, but any other
applications that might share the ALF application pool would be affected too. That is why it is
recommended to host ALF Server in its own Application Pool.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 17 of 42

5. Connection Editor
Connection Editor is the first tab of ALF Designer, and allows you to manage connections to data
sources.

Figure 21 - Connection Editor

Connection Editor allows you to define which connections will be made from this form. Every
connection points to a Data Source. There are two types of connections available, AgilePoint Server
connections and CRM Organization connections:

Figure 22 - Connection Types

Usually, all needed connections are added on form creation after selecting the appropriate template.
Connections to default AgilePoint and CRM servers without credentials are usually added.
Adding a connection doesn’t mean it will be opened when loading the form. Connections are opened on
demand, only when they are needed.
To add a new connection, just click on the connection type on the toolbar on the left.

5.1 Entity Editor
Every Connection is depicted on the surface area using a control called Entity Editor.
To delete a connection, just click on the delete () button on the top right corner of the control.
When you add a connection, it is given a default name based on its type. You can rename it using the
name box between the connection icon and the delete button. Connection names must be unique. An

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 18 of 42

error will be thrown if you try to give the same name to more than one connection.
The rest of the Entity Editor control consists of Attribute Editors. Each attribute editor has an attribute
name on the left, and an attribute value control on the right.
Attribute names might be followed by a requirement indication icon:

• Required (): Means you must provide a value for this attribute
• Recommended (): Means you should provide a value for this attribute, but it is not mandatory
• Read-only (): Means you can’t change the value of this attribute
• The absence of icon means that the attribute is optional

Some attributes are grouped. You can click on the Hide () button on the left side of the group header
to hide them all. To view them again, just click on the Show () button on the left side of the group
header.

5.2 Entity Validation
Whenever you leave an attribute, an attribute group, or an entity, it is validated. That could result in
issues being displayed on the right side of the attribute, the attribute group header, or the whole entity.
There are two kinds of issues:

• Warning (): Means that something is wrong, but the form will work anyway
• Error (): Means that something must be corrected for the form to work

Hovering the mouse cursor over the issue icon will display a message to clarify what is wrong:

Figure 23 - Validation Issue (Warning) on AgilePoint Server Credentials

5.3 AgilePoint Connection
Indicates a connection to an AgilePoint server. Usually, the default one.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 19 of 42

Figure 24 - AgilePoint Connection
You must provide the AgilePoint Server URL. Usually, only the Server address is specified but, if the
service hasn’t been installed in the default folder (agilepointserver/workflow.asmx), you must specify
the full URL to the service.
If you mark the connection as read-only, the form won’t be able to change the process instance data
(custom attributes).
Credentials are optional. For a full explanation of credentials usage, see document “AgileXRM Reference
Architecture”. In any case, for credentials to be used, the UserName must be specified.

5.4 CRM Connection
Indicates a connection to a single organization in a CRM server. Usually, the default one.

Figure 25 - CRM Connection

You must provide the CRM Server URL and the Organization name.
If you mark the connection as read-only, the form won’t be able to create new entities or edit existing
ones.
Credentials are optional. For a full explanation of credentials usage, see document “AgileXRM Reference
Architecture”. In any case, for credentials to be used, the UserName must be specified.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 20 of 42

6. Schema Designer
Schema Designer is the second tab of ALF Designer, and allows you to manage the entities that will be
retrieved from / updated in / inserted into data sources.
It uses the same paradigm of entity types on the tool bar on the left and entity editors on the design
area.

Figure 26 - Schema Designer

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 21 of 42

6.1 Result Metadata
Unlike connections, entities in Entity Editor use the attributes you provide here to retrieve data (other
attributes) from existing entities, or provide data to create new entities.
These attributes depend on the metadata retrieved from the connection the entity is associated to.
Once the entity attributes are valid, you can see the resulting attributes by opening the “Entity
Attributes” attribute group, by clicking the Show () button on the left side of the group header.

Figure 27 - Result Metadata for an Existing CRM Case

Some entities allow you to edit the name and type of some attributes, while others let you create new
attributes and delete them if you think they are not needed.

6.1.1 Result Metadata Attributes
Every attribute in the result metadata portion of Entity Editor is composed of the following controls:

Delete Button ()
This button appears only in attributes that can be deleted. If you click on it, the attribute will be deleted,
and won’t be available for the user interface.

Figure 28 - Delete Attribute Button

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 22 of 42

Required Button
This button contains an icon that indicates the requirement constraints for the attribute. You can only
change the requirement constraint of some attributes.

Figure 29 - Read-only Required Button in non-editable attribute

This is a toggle button that toggles between the following values:
• Required (): Means the final user must provide a value for this attribute. This option is available for

non-read-only entities only
• Recommended (): Means the final user should provide a value for this attribute, but it is not

mandatory. This option is available for non-read-only entities only
• Read-only (): Means the final user can’t change the value of this attribute. This option is available for

non-read-only entities only
• Hidden (): Means the final user can’t see the value of this attribute
• The absence of icon means that the attribute is visible and optional for the final user

Figure 30 - Required Button in editable attribute

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 23 of 42

Password Button
Password Button is only available in String attributes in some entities. It allows you to mark an attribute
as a password, so it will appear on a password box (with a repeating symbol instead of real chars) in the
user interface.

Figure 31 - Password Button

This is a toggle button that toggles between the following values:
• Password (): Means the attribute is a password and its characters will be displayed as a repeating

symbol
• The absence of icon means that the attribute value is not a password

Attribute Name
It indicates the attribute name. You can only edit the name of some attributes in some entities.
Attribute names must be unique in their entities.

Figure 32 - Editable Attribute Name Box

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 24 of 42

Attribute Type
It indicates the type of the value of the attribute. You can only edit the type of some attributes in some
entities.

Figure 33 - Editable Attribute Type Box with dropped-down list of available types

Default Value
You can provide a default value for non-read-only attributes. This is very useful to provide some fields to
your end user, like his name, his company, etc.
You can either provide a fixed value or bind the default value of the attribute to the value of other
attribute in the schema.
For now, we’ll see only how to provide constant default values. The other option will be described later
(data binding).
To provide a constant default value, just forget about the drop icon () on the right and enter the value
in the control on the left. The type of control depends on the type of the attribute.

Figure 34 - Constant Default Values of several types

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 25 of 42

6.2 Data Binding
Data binding is a very powerful tool. It consists in using the value of a result attribute retrieved by an
entity as a parameter attribute to retrieve other. For example, when you retrieve a Work Item, you get
the result attribute ProcInstId. You can see it if you open the Entity Attributes group of a work Item
entity. Then, you can bind the parameter ProcessInstanceId of a Process Instance entity to it, by
selecting it in the combo box. The effect of this data binding is using a value retrieved in one entity (in
this case, the value ProcInstId of Work Item) to retrieve a different entity (in this case, Process Instance
data).

Figure 35 - Data Binding

This makes the latter entity dependent on the former one. While in Connection Editor the layout of
connections on the design surface is meaningless, in Schema Editor entities are laid out in a way that
makes dependent entities appear on the right side of the entities they depend on. This avoids circular
references, i.e., entity A depending of an attribute of entity B and entity B depending on an attribute of
entity A. That is not possible because then entity A would have to be retrieved to retrieve entity B, but
entity B would require entity A to be retrieved first.
Other use for data binding is using the value of an attribute as the default value of other attribute. With
this type of binding, take into account that it is the initial value of the source attribute the one that is
being copied to the target attribute. If the user changes the value of the source attribute, that change
won’t be copied to the target attribute.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 26 of 42

Figure 36 - Data Bound Default Value

To bind an entity parameter or an attribute default value to the value of another attribute, click on the
drop-down icon () on the right side. It will drop a tree with all entities with attributes to bind to. Only
entities that won’t cause a circular reference will appear. If you open an entity, you will only see
attributes you can bind to. These are the attributes that can be bound:

• Attributes of the same type
• A string attribute and any other attribute, as long as its value can be cast to/from string
• An array of byte attribute and any other attribute, as long as it is serializable

Figure 37 - Data Binding Drop-down Tree

There are three buttons on the top of the drop-down:

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 27 of 42

• Nothing Button (): Removes the current value of the attribute

• Value Button (): Removes the current binding of the attribute and allows you to enter a
constant value

• Text Button(): Allows you to enter a localizable text, as described in next section

6.3 Localizable Texts and Concatenations
If you provide a constant string in the text box for the default value of an attribute, that value will be
used for any end-user, no matter what language he speaks. To provide localizable texts, click the Text

Button() on the top right corner of the data binding drop down. This mechanism also allows
you to concatenate values from several attributes. When you click the button, the Text Editor Window
pops up:

Figure 38 - Text Editor Window

The Text Editor Window has a Language combo similar to that on the ALF designer tool bar, which
allows you to introduce different texts for different languages and / or cultures without having to open
the same window many times.
Apart from that, a text can be composed of many different string literals and / or data bindings.

6.4 Entity Bar
The following entities can be added to form schema:

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 28 of 42

Figure 39 – Entity Bar in Schema Designer

6.4.1 Parameters Entity
This entity represents the parameters passed to the form by the ASP form that hosts it. Each Attribute
represents a different parameter.

Figure 40 - Parameters Entity

ALF Parameters can be any query string parameter in the URL of the container page, or any parameter
passed by container page to Silverlight object.
This entity needs no attributes to be retrieved, and is a read-only entity.

6.4.2 Work Item Entity
Represents a manual activity in an AgilePoint process. It needs two parameters to be retrieved: the
connection to AgilePoint (usually the default one) and the Work Item Id (usually data bound to
Parameter WorkItemId).

Figure 41 - Work Item Entity

This is a read-only entity.

6.4.3 Process Instance Entity
Represents an instance of an AgilePoint process. It needs two parameters to be retrieved: the
connection to AgilePoint (usually the default one) and the Process Instance Id (usually data bound to
attribute ProcInstID in a Work Item entity).

Figure 42 - Process Instance Entity

This is a read-only entity.

6.4.4 Custom Attributes Entity
Represents the custom attributes (context data) of an instance of an AgilePoint process. It needs two
parameters to be retrieved: the connection to AgilePoint (usually the default one) and the Work Object

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 29 of 42

ID (usually data bound to attribute WorkObjectID in a Work Item or Process Instance entity).

Figure 43 - Custom Attributes Entity

You can add attributes to the metadata. If you give a default value to custom attribute, or let the user
edit it, those changes will be made on process instance data when form is submitted by end user.

6.4.5 AgileXRM User Entity
Represents an AgileXRM User. This has to be a named user, not a user that connects through the
external connector.

Figure 44 - AgileXRM User Entity

AgileXRM stores this kind of users in CRM’s entity User (systemuser). So, this entity is similar to using
Existing CRM Entity to retrieve an entity of type User, except that AgileXRM User queries using the Login
Name instead of the User Id.
You have to provide the CRM Connection (usually the default one) and the Login Name (usually data
bound to parameter LoginName).

6.4.6 AgileXRM External User Entity
Represents an AgileXRM External User. This is a user that connects through the external connector.

Figure 45 - AgileXRM External User Entity

AgileXRM stores this kind of users in CRM’s entity Contact (contact). So, this entity is similar to using
Existing CRM Entity to retrieve an entity of type Contact, except that AgileXRM External User queries
using the Login Name instead of the Contact Id.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 30 of 42

You have to provide the CRM Connection (usually the default one) and the Login Name (usually data
bound to parameter LoginName).

6.4.7 New CRM Entity
This represents a New Entity that will be created in CRM when form is submitted by end user.

Figure 46 - New CRM Entity

You have to provide the CRM Connection to the organization in which you want the entity to be created
(usually the default one) and the type of entity to create. The list of entity types is retrieved from
selected connection, and the result attributes are those for that type of entity in the selected CRM
Organization. If selected organization is not the production one, it should be an exact copy of it.
If you don’t see an entity you have just created, or any other change just made to metadata, see the
description of Clean Cache Button on the Designer Toolbar.
The new entity will be initialized with CRM’s default values for attributes of that entity.

6.4.8 Existing CRM Entity
Represents an entity that currently exists in CRM. If you modify any attributes, those changes will be
updated in CRM when the form is submitted by end user.

Figure 47 - Existing CRM Entity

You have to provide the CRM Connection to the organization from which you want the entity to be
retrieved (usually the default one) and the type of entity to retrieve. The list of entity types is retrieved
from selected connection, and the result attributes are those for that type of entity in the selected CRM
Organization. If selected organization is not the production one, it should be an exact copy of it.
If you don’t see an entity you have just created, or any other change just made to metadata, see the
description of Clean Cache Button on the Designer Toolbar.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 31 of 42

7. Submit Action Editor
Submit Action Editor is the third tab of ALF Designer, and allows you to manage the actions that will be
taken when the form is submitted.

Figure 48 - Submit Action Editor

The first action that is always taken when a form is submitted is to create new entities and / or update
existing ones. Then, submit actions are executed in the order they appear on the designer.
Note: Every submit action is executed independently. If a submit action fails, subsequent actions won’t
be executed, but previous actions have been. So, some actions may have been executed even if an error
is thrown.
These are the available Submit Actions

Figure 49 - Available Submit Actions

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 32 of 42

7.1 Complete Form Submit Action
This action marks the form as completed. Completing form is not the same as completing the manual
task (a.k.a. work item).

Figure 50 - Complete Form Submit Action

Work Items have a property called Wait Work Performed that doesn’t allow the process to advance if
the form hasn’t been completed.

Figure 51 - Wait Work Performed Property for Manual Work Items

For example, CRM Activities can’t be completed (by clicking in the Save As Completed button, for
example) if they represent a manual task in an AgileXRM process in which Wait Work Performed is True
and the form hasn’t been completed.
It requires two parameters to run: the connection to AgilePoint (usually the default one) and the Work
Item Id (usually data bound to Parameter WorkItemId).

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 33 of 42

7.2 Complete Work Item Submit Action
This completes an AgilePoint Work Item. If the Work Item is associated to a CRM activity, that activity is
completed too.

Figure 52 - Complete Work Item Submit Action

It requires two parameters to run: the connection to AgilePoint (usually the default one) and the Work
Item Id (usually data bound to Parameter WorkItemId).

7.3 Launch Process 1 Submit Action
This action launches a new instance of an AgileXRM process, and associates it with the first “New CRM
Entity” it finds in Form Schema.

Figure 53 - Launch Process 1 Submit Action

This submit action requires six parameters: The connection to the AgilePoint Server in which the process
instance is going to be created (usually the default one), the name of the process template from which
to create a new instance, the CRM Organization that hosts the process main entity (usually the default
one), the LoginName of the user we want to become the process initiator (usually data bound to
LoginName Parameter), and two version-related parameters.
If version is left blank, or *.* is entered, released version of process will be used. If a string with a major
version only (like 5.*) is entered, the latest version 5 of process will be used. If a string with both major
and minor versions is entered, that specific version will be launched.
If specified version is not found and StartReleasedIfVersionNotFound is checked, Released version of
process will be launched.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 34 of 42

7.4 Launch Process 2 Submit Action
This action launches a new instance of an AgileXRM process, and associates it with the provided entity.

Figure 54 - Launch Process 2 Submit Action

This submit action requires eight parameters: The connection to the AgilePoint Server in which the
process instance is going to be created (usually the default one), the name of the process template from
which to create a new instance, the CRM Organization that hosts the process main entity (usually the
default one), the LoginName of the user we want to become the process initiator (usually data bound to
LoginName Parameter), the type and Id of the entity that will become the main entity of the new
process, and two version-related parameters.
If version is left blank, or *.* is entered, released version of process will be used. If a string with a major
version only (like 5.*) is entered, the latest version 5 of process will be used. If a string with both major
and minor versions is entered, that specific version will be launched.
If specified version is not found and StartReleasedIfVersionNotFound is checked, Released version of
process will be launched.

7.5 Complete Activity Submit Action
This completes a CRM Activity (Fax, Phone Call, …). If the activity is associated to an AgilePoint Work
Item, that Work Item is completed too.

Figure 55 - Complete Activity Submit Action

It requires two parameters to run: the CRM Organization (usually the default one) and the Activity Id
(usually data bound to another attribute).

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 35 of 42

8. Form Editor
Form Editor is the fourth (and last) tab of ALF Designer, and possibly the most important. It allows you
to define the interface that will be used to show data to the end user and get data from him / her.

Figure 56 - Form Editor

Form Editor is divided in three zones: Entity Bar on the left, Actions Pane on the right, and design
surface in the middle.

8.1 Entity Bar
Entity bar contains all the entities in form schema. The drop-down button on the right of every entity
contains all the result attributes from that entity.

Figure 57 - Form Editor Entity Bar

Clicking on an entity adds the default form for that entity to current form. For CRM entities (either new
or existing), the CRM Form is copied from CRM. For other entities, a default form is created.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 36 of 42

Clicking on an attribute in the drop-down list on the right of an entity adds a control for that attribute
only. If that attribute belongs to a CRM Entity (either new or existing), and the attribute is on the CRM
Form, the control is copied from CRM. For other attributes, a default control is created.

Figure 58 - Drop-down list of Entity Attributes

Apart from single attributes, the drop-down list can add a control to manage collections of child entities.

Figure 59 - Child Entities in Entity Drop-down

Clicking on a child entity adds a Children View control. This control allows end user to add, delete, view,
update and search for child entities of the clicked type. Form designer can decide which of these options
will be available for the end user. Children View control properties are described later.

Figure 60 - Children View Control

A special case is when you click on “Attached Files” child entity. In this case, the Attached Files control is
added. Attached Files control properties are described later.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 37 of 42

Figure 61 - Attached Files Control

8.2 Design Surface
AgileLightForms Designer Design Surface is where you see a WYSIWYG layout of the form the end user
will see.

Figure 62 - Form Editor Design Surface with a cell selected

AgileLightForms have a layout similar to CRM Forms. Every Form is composed of one or more tabs, each
one containing one or more sections. Every section has a number of columns in which cells are laid out
in rows. Every cell is composed of a control that can be preceded by a label.
A full reference of properties of form, tabs, sections and controls can be found later.
Apart from letting you see what the end user will see, the design surface also allows you to select tabs,
sections and cells.
To select a cell, just click on either the cell control or label. A yellow highlight box indicates the currently
selected cell. Selecting a cell automatically selects its container section and tab, but no visual indication
of that is displayed.
To select a section, just click on the section space between or around controls. A blue highlight box
indicates the currently selected section. Selecting a section automatically selects its container tab, but
no visual indication of that is displayed.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 38 of 42

Figure 63 - Design Surface with a section selected

To select a tab, just click on the tab header on the top of the design surface. A red highlight box indicates
the currently selected tab.

Figure 64 - Design Surface with a tab selected

If you want to unselect everything just click on the empty space at the right of tab labels.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 39 of 42

8.3 Actions Pane
This pane on the right side of Form Editor contains many useful tools.

Figure 65 - Form Editor Actions Pane

8.3.1 Movement Pane
The movement pane allows you to move the Tab, Section, or Cell selected on the design surface.

Figure 66 - Movement Pane

8.3.2 Command Pane
The command Pane contains some useful buttons:

• Add Tab Button (): Adds a new tab to the form

• Add Section Button (): Adds a new section to the selected tab

• Remove Button (): Removes the selected tab, section or cell

• Clean Button (): Cleans empty space on the form

8.3.3 Form Properties
These are the properties that you can configure for your form:

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 40 of 42

Figure 67 - Form Properties

• Title: This is a localizable text that will be used as Form Title.
Tip: Use the language combo on the tool bar to enter the label in different languages and / or cultures.

• Submit: This is a localizable text that will be used as the caption for the Submit button. If you leave it
empty, “Save Data” will be used.
Tip: Use the language combo on the tool bar to enter the label in different languages and / or cultures.

• Permissions: Allows you to specify under which permissions will the form run. For a complete
explanation, see the document “AgileXRM Reference Architecture”.

8.3.4 Tab Properties
There’s only one property that can be configured for a tab: its label.

Figure 68 - Tab Properties

Tip: Use the language combo on the tool bar to enter the label in different languages and / or cultures.

8.3.5 Section Properties

Figure 69 - Section Properties

• Label: Allows you to introduce the section label.

Tip: Use the language combo on the tool bar to enter the label in different languages and / or cultures.
• Show Label: Indicates whether section label will appear on the form.
• Show Bar: Indicates whether a bar will appear below the section label on the form.
• Stretch: Indicates whether the section will stretch vertically to occupy as much space as possible. All

spare vertical space will be shared between all sections with attribute Stretch set.
• Layout: Lets you choose between some layouts. The numbers in brackets indicate the relative widths of

the columns.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 41 of 42

• Label Width: Lets you choose a fixed with for the labels in the section or, if you leave the slider at its left
most side, ALF will choose the minimum to accommodate the labels in every language.

• Tab: Allows you to select a different tab to move the section to.

8.3.6 Attribute Properties

Figure 70 - Attribute Properties

• Label: Allows you to introduce the attribute label.

Tip: Use the language combo on the tool bar to enter the label in different languages and / or cultures.
• Show Label: Indicates whether attribute label will be visible.
• Read-only: Indicates whether attribute will be read-only, and so editing will not be permitted on the

control.
• Stretch: Indicates whether the control will stretch vertically to occupy as much space as possible. All

spare vertical space in the section will be shared between all controls with attribute Stretch set. When
you set Stretch on a control, it is automatically set in the container section as well.

• Columns: Indicates how many columns will be used by the cell. The possible number depends on the
chosen section layout.

• Background: Indicates the background color of the control. Not all controls can adjust their background
• Foreground: Indicates the foreground color of the control. Not all controls can adjust their foreground
• Bold: Indicates whether control text will be bold. Not all controls can make their text bold
• Tab: Allows you to select a different tab to move the attribute to. No control is really moved until you

select a target section.
• Section: Selects which section in the previous tab will be the container for the cell.

8.3.7 Control Properties
Some types of controls have additional properties, as shown below.

TextBox Properties
Textbox controls have two additional properties:

o Mode (): to specify whether you want a Button that will navigate to the URL specified by
attribute value instead of a text box to edit the attribute value.

o Multiline (): to specify whether the control will accept several lines. If so, both the control and
the section will stretch.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 42 of 42

o Min. Lines (): Indicates the minimum number of lines the control will stretch

Lookup Properties
Lookup controls have some additional properties:

Figure 71 - Lookup Properties

o Window Title (): to specify the title of the lookup search window. If
you leave it blank, the name of the lookup attribute will be used.

Tip: Remember you can localize this text using the Language combo.
o Allow Search: Check it to allow the end-user to search for child entities containing a text.
o Allow View: Indicates whether View button will be available. If control is not read-only and Allow

Update is also set, Update button will appear instead of View button. View button will never show if
Existing Entities Form hasn’t been specified.

o Allow Add: Indicates whether Add button will be available. Add button won’t appear on read-only
entities, or if New Form Template hasn’t been specified.

o Allow Remove: Indicates whether the Remove / Recover buttons will appear. Recover button appears
when you select an already removed entity. None of these buttons will appear on read-only entities.

o Allow Update: Indicates whether the Update button will be available. If either control or entity are read-
only, View button will appear instead. Update button will never show if Existing Entities Form hasn’t
been specified.

o Allow Paging: Indicates whether paging will be enabled, and so entities will be retrieved on a page-by-
page basis.

o Multiple Entities: For party lists, indicates whether user will be allowed to select more than one entity.
Some party lists, such as sender fields, can point to a single party.

o View (): To specify the view to use to let user choose entities from. If no view is specified,
the Default Lookup View is used.

o <EntityType> Properties Form: Lets you choose the form that will appear when the user tries to view or
update a child entity of that type. This form should be created using the template “Form to View or
Update Existing Child Entities”. A different form must be specified for every possible entity type.

If you don’t specify a value, the View / Update button won’t appear on the control when an entity of
that type is selected.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 43 of 42

o New <EntityType> Form: Lets you choose the form that will appear when the user tries to create a new
child entity of that type. This form should be created using the template “Form to Create New Child
Entities”. A different form must be specified for every possible entity type.
If you don’t specify a value, the New button won’t appear when you select the entity type with the
missing form.

Children View Properties
Children View control provides the following extra properties you can configure.

Figure 72 - Children View Properties

o Allow Search: Check it to allow the end-user to search for child entities containing a text.
o Allow View: Indicates whether View button will be available. If control is not read-only and Allow

Update is also set, Update button will appear instead of View button. View button will never show if
Existing Entities Form hasn’t been specified.

o Allow Add: Indicates whether Add button will be available. Add button won’t appear on read-only
entities, or if New Form Template hasn’t been specified.

o Allow Remove: Indicates whether the Remove / Recover buttons will appear. Recover button appears
when you select an already removed entity. None of these buttons will appear on read-only entities.

o Allow Update: Indicates whether the Update button will be available. If either control or entity are read-
only, View button will appear instead. Update button will never show if Existing Entities Form hasn’t
been specified.

o Allow Paging: Indicates whether paging will be enabled, and so entities will be retrieved on a page-by-
page basis.

o Multiple Entities: For party lists, indicates whether user will be allowed to select more than one entity.
Some party lists, such as sender fields, can point to a single party.

o <EntityType> Properties Form: Lets you choose the form that will appear when the user tries to view or
update a child entity of that type. This form should be created using the template “Form to View or
Update Existing Child Entities”. A different form must be specified for every possible entity type.

If you don’t specify a value, the View / Update button won’t appear on the control when an entity of
that type is selected.

o New <EntityType> Form: Lets you choose the form that will appear when the user tries to create a new
child entity of that type. This form should be created using the template “Form to Create New Child
Entities”. A different form must be specified for every possible entity type.
If you don’t specify a value, the New button won’t appear when you select the entity type with the
missing form.

AgileLightForms Design Guide DOC ID: 12111-ALD-1.0

 Page 44 of 42

Attachments View Properties
Attachments View control provides the following extra properties you can configure.

Figure 73 - Attachments View Properties

o Allow View: Indicates whether View button will appear and let end-user view the contents of attached
files already existing on entity.

o Allow Add: Indicates whether Add button will appear and let end-user add new attached files. Of
course, neither control nor entity can be read-only.

o Allow Remove: Indicates whether Remove button will appear and let end-user remove already existing
attached files. Of course, neither control nor entity can be read-only.

o Allow Update: Indicates whether Update button will appear and let end-user add attached files with the
name of an already existing one, updating them. Of course, neither control nor entity can be read-only.

	1. Introduction
	1.1 Disclaimer of warranty

	2. Managing Forms in CRM
	3. Creating new Forms
	3.1 Form to Complete a Manual CRM Activity
	3.2 Form to Complete an External Manual Task
	3.3 Form to Create Child Entities
	3.4 Form to View or Edit Child Entities
	3.5 Form To Create Entities and Launch a Process

	4. AgileLightForms Designer Tool Bar
	4.1 Language Combo
	4.2 Export Form… Button
	4.3 Import Form… Button
	4.4 Upload Handler… Button
	4.5 Remove Handler Button
	4.6 Full-screen Button
	4.7 Clear Cache Button

	5. Connection Editor
	5.1 Entity Editor
	5.2 Entity Validation
	5.3 AgilePoint Connection
	5.4 CRM Connection

	6. Schema Designer
	6.1 Result Metadata
	6.1.1 Result Metadata Attributes
	Delete Button ()
	Required Button
	Password Button
	Attribute Name
	Attribute Type
	Default Value

	6.2 Data Binding
	6.3 Localizable Texts and Concatenations
	6.4 Entity Bar
	6.4.1 Parameters Entity
	6.4.2 Work Item Entity
	6.4.3 Process Instance Entity
	6.4.4 Custom Attributes Entity
	6.4.5 AgileXRM User Entity
	6.4.6 AgileXRM External User Entity
	6.4.7 New CRM Entity
	6.4.8 Existing CRM Entity

	7. Submit Action Editor
	7.1 Complete Form Submit Action
	7.2 Complete Work Item Submit Action
	7.3 Launch Process 1 Submit Action
	7.4 Launch Process 2 Submit Action
	7.5 Complete Activity Submit Action

	8. Form Editor
	8.1 Entity Bar
	8.2 Design Surface
	8.3 Actions Pane
	8.3.1 Movement Pane
	8.3.2 Command Pane
	8.3.3 Form Properties
	8.3.4 Tab Properties
	8.3.5 Section Properties
	8.3.6 Attribute Properties
	8.3.7 Control Properties
	TextBox Properties
	Lookup Properties
	Children View Properties
	Attachments View Properties

