
 © 2012 AgilePoint, Inc. DOC ID: 12111-ADS-1.0

AGILEDIALOGS SDK (BETA)

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 2 of 7

Table of Contents
1. Introduction 3

1.1 Disclaimer of warranty 3

2. Developing a custom control 4
2.1 Creating the project 4

2.1.1 Required References 4
2.1.2 Coding the custom control 4
2.1.3 Sample Code 6

3. Deploying a Custom Control 7

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 3 of 7

AgileDialogs SDK (BETA)

1. Introduction
This document describes the mechanisms that AgileDialogs provides to include custom controls
in dialogs pages.

These custom controls are developed in Silverlight (Version 4).

1.1 Disclaimer of warranty
AgilePoint Inc. makes no representations or warranties, either express or implied, by or with
respect to anything in this document, and shall not be liable for any implied warranties of
merchantability or fitness for a particular purpose or for any indirect, special or
consequential damages.

Copyright © 2012, AgilePoint Inc. All rights reserved.

GOVERNMENT RIGHTS LEGEND: Use, duplication or disclosure by the U.S. Government is
subject to restrictions set forth in the applicable AgilePoint Inc. license agreement and as
provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)
(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

‘AgilePoint Inc.’ and all its products are trademarks of AgilePoint Inc.. References to other
companies and their products use trademarks owned by the respective companies and are
for reference purposes only.

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 4 of 7

2. Developing a custom control
Custom controls for AgileDialogs are developed in Silverlight 4 using Visual Studio.
AgileDialogs provides an interface that this custom controls should implement if the control is
used to set values in dialog context.

2.1 Creating the project
To develop a custom control create a new Silverlight Class Library Project in Visual Studio:

2.1.1 Required References
In order to develop the custom controls the following references must be added:

• AgileDialogsSDK
• AgileDialogsSilverlightControls

If other references are added to the project the DLL’s must be deployed with the DLL that
contains the custom control. For instance, if third party controls are used the DLLs of these
controls must be deployed in order to make custom control work.

2.1.2 Coding the custom control
AgileDialogs controls get information from the user and put this information in the Dialog context to use
the values gathered from the user to take actions in further steps or dialogs automatic activities.
To set values in context and provide validation at runtime the custom control must implement the
interface: AgileDialogsSilverlightControls.Common.IAgileScriptsControl.
This interface has the following definition:
 public interface IAgileScriptsControl
 {
 string GetValue();
 string GetDisplayValue();
 bool isValid();
 bool Required{get;set;}
 string GetValueVariableName();
 string GetDisplayVariableName();
 void SetDefaultValue(string defaultValue);
 }

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 5 of 7

GetValue Method
This method returns a string with the value selected or set by the user in the custom control. This is the
value that will be stored in dialog context in a variable with the name returned by the method
GetValueVariableName.

GetDisplayValue Method
If the control returns a value to be presented to the user that is different from the internal value (for
instance, a date is internally stored as a string in sortable format and is presented to the user using
client locale) this method should return the readable value, otherwise return the same value that
GetValue.
This is the value that will be stored in dialog context in a variable with the name returned by the method
GetDisplayVariableName.

isValid Method
The dialog cannot continue until all controls return is valid true, so if the value is not valid this method
should return false.

Required Property
When this property is true the user must set or select a value before the validation is passed.

GetValueVariableName Method
This is the name of the context variable where the value set by the user will be stored.
Usually this value should return the name of the control so the recommended coding is:
public string GetValueVariableName()
{
 return this.Name;
}

GetDisplayVariableName Method
This is the name of the context variable where the display value set by the user will be stored.
Usually this value should return the name of the control plus “d” (this is the default value when
configuring dialogs in Envision) so the recommended coding is:
public string GetDisplayVariableName()
{
 return this.Name + “d”;
}

SetDefaultValue Method
This method is called by AgileDialogs Runtime Engine when the user has set a default value in the
configuration.
This method should manage the assignation of this default value taken into account the internal
behavior of the control.

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 6 of 7

2.1.3 Sample Code
This is the sample code for a Hello World control, with a text block to show a message:

public partial class MyDialogsCustomControl : UserControl, AgileDialogsSilverlightControls.Common.IAgileSc
riptsControl
{
 string _myValue;
 public MyDialogsCustomControl()
 {
 InitializeComponent();
 }

 public string GetDisplayValue()
 {
 return "Hello World!!!";
 }

 public string GetDisplayVariableName()
 {
 return this.Name + "d";
 }

 public string GetValue()
 {
 return myTextBlock.Text;
 }

 public string GetValueVariableName()
 {
 return this.Name;
 }

 public bool Required
 {
 get
 {
 return false;
 }
 set
 {
 }
 }

 public void SetDefaultValue(string defaultValue)
 {
 _myValue = defaultValue;
 myTextBlock.Text = defaultValue;
 }

 public bool isValid()
 {
 return true;
 }
}

AgileDialogs SDK (BETA) DOC ID: 12111-ADS-1.0

 Page 7 of 7

3. Deploying a Custom Control
There are two types of custom controls:

• Controls that do not have references to third party DLLs
• Controls that have references to third party DLLs

The DLLs with Controls that do not need other DLLs must be copied to the directory CustomDlls located
in the directory where AgileDialogs web application is installed, for instance
C:\AgileXRM\AgileDialogs\CustomDlls.
When the DLL has references, the custom control DLL and referenced DLLs must be included in a ZIP file
and copied to CustomDlls directory.
AgileDialogs Runtime Engine loads custom controls dynamically from the directory CustomDlls.

	1. Introduction
	1.1 Disclaimer of warranty

	2. Developing a custom control
	2.1 Creating the project
	2.1.1 Required References
	2.1.2 Coding the custom control
	GetValue Method
	GetDisplayValue Method
	isValid Method
	Required Property
	GetValueVariableName Method
	GetDisplayVariableName Method
	SetDefaultValue Method

	2.1.3 Sample Code

	3. Deploying a Custom Control

